Skip to content

API Reference

⚠️ Important Notice: This document is AI-generated based on source-code analysis. Although we strive for accuracy, inconsistencies or issues may still exist. We are actively improving and validating all content. If you encounter any problems, please report them promptly.

Core Classes

Problem

Class that defines a multi-objective optimisation problem.

Constructor:

Problem(objectives, n_points, region, constraints=[], penalty_weight=1e6)

Parameters:

  • objectives (list[callable]): List of objective functions. Each function takes coords (n_points, 2) and returns a scalar.
  • n_points (int or list[int]): Number of coordinate points to optimise. Can be a fixed integer (e.g., 10) or a list [min, max] to allow the number of points to vary within a range during optimization.
  • region (shapely.geometry.Polygon): Shapely polygon defining the feasible region.
  • constraints (list, optional): List of constraint functions. Default is an empty list.
  • penalty_weight (float, optional): Weight applied to constraint violations. Default is 1e6.

Methods:

sample_population(pop_size)

Generate an initial population.

Parameters:

  • pop_size (int): Population size.

Returns:

  • numpy.ndarray: Population array with shape(pop_size, n_points, 2).

evaluate(population, n_jobs=1)

Evaluate the objective values for all individuals in a population. Uses serial computation when n_jobs=1 and parallel computation when n_jobs≠1.

Parameters:

  • population (numpy.ndarray): Population with shape(pop_size, n_points, 2).
  • n_jobs (int, optional): Number of jobs for parallel computation. Default is 1 (serial computation). Set to -1 to use all available CPU cores, or any other value to specify the number of cores to use.

Returns:

  • numpy.ndarray: Array of objective values with shape (n_objectives, pop_size).

Parallel Computation Notes:

  • When to use parallel computation: Parallel processing is recommended for problems with computationally intensive objective functions or constraints. It's particularly effective for large populations or when each evaluation takes significant time.
  • When NOT to use parallel computation: For simple optimization problems with fast objective functions, the overhead of parallel processing may reduce performance. In these cases, serial computation (n_jobs=1) is recommended.
  • Example use cases for parallel computation:
  • Complex simulations in each objective function
  • Large population sizes (>100 individuals)
  • Objective functions involving numerical integration or differential equations
  • Problems with many coordinate points

  • When to use parallel computation: Parallel processing is most beneficial for computationally intensive objective functions or constraints, such as those involving complex simulations, numerical integrations, or when evaluating large populations. It's particularly effective when each individual evaluation takes significant time (>0.01s).

  • When NOT to use parallel computation: For simple and fast objective functions, the overhead of parallel processing may outweigh its benefits. If individual evaluations are very quick (<0.001s), serial computation may be more efficient.
  • Performance considerations: The speedup from parallel computation depends on the number of available CPU cores and the computational complexity of the objective functions. The overhead of parallelization becomes negligible as the complexity of objective functions increases.

Example:

from coords_nsga2 import Problem
from coords_nsga2.spatial import region_from_points

# Define objective functions
def obj1(coords):
    return np.sum(coords[:, 0])

def obj2(coords):
    return np.sum(coords[:, 1])

# Create a problem
region = region_from_points([[0, 0], [1, 0], [1, 1], [0, 1]])
problem = Problem(objectives=[obj1, obj2], n_points=5, region=region)

# Generate an initial population
population = problem.sample_population(10)
print(f"Population shape: {population.shape}")  # (10, 5, 2)

# Evaluate the population
values = problem.evaluate(population)  # shape: (n_objectives, pop_size)
print(f"Objective 1 values: {values[0]}")
print(f"Objective 2 values: {values[1]}")

CoordsNSGA2

NSGA-II optimiser for coordinate problems.

Constructor:

CoordsNSGA2(problem, pop_size, prob_crs, prob_mut, random_seed=42, n_jobs=1)

Parameters:

  • problem (Problem): Problem instance.
  • pop_size (int): Population size (must be even).
  • prob_crs (float): Crossover probability in the range 0-1.
  • prob_mut (float): Mutation probability in the range 0-1.
  • random_seed (int, optional): Random seed. Default is 42.
  • n_jobs (int, optional): Number of jobs for parallel computation. Default is 1 (serial computation). Set to -1 to use all available CPU cores, or any other value to specify the number of cores to use.

Attributes:

  • P: Current population, shape (pop_size, n_points, 2).
  • values_P: Objective values of the current population, shape (n_objectives, pop_size).
  • P_history: Population history.
  • values_history: List of objective-value arrays per generation, each with shape (n_objectives, pop_size).

Methods:

run(generations, verbose=True)

Run the optimization algorithm.

Parameters:

  • generations (int): Number of generations.
  • verbose (bool, optional): Show progress bar if True. Default is True.

Returns:

  • numpy.ndarray: Final population.

save(path)

Save the optimiser state to a pkl file.

Parameters:

  • path (str): File path to save to.s

load(path)

Load the optimiser state from a pkl file.

Parameters:

  • path (str): File path to load from.

Example:

from coords_nsga2 import CoordsNSGA2, Problem

# Create an optimiser
optimizer = CoordsNSGA2(
    problem=problem,
    pop_size=20,
    prob_crs=0.5,
    prob_mut=0.1
)

# Run optimisation
result = optimizer.run(1000)

# Save results
optimizer.save("optimization_result.pkl")

# Load results
optimizer.load("optimization_result.pkl")

Spatial Utilities

region_from_points(points)

Create a polygon region from a list of points.s

Parameters:

  • points (list): List of points in the form [[x1, y1], [x2, y2], ...].

Returns:

  • shapely.geometry.Polygon: Shapely polygon object.

Example:

1
2
3
4
5
6
from coords_nsga2.spatial import region_from_points

# Create a triangular region
points = [[0, 0], [1, 0], [0.5, 1]]
region = region_from_points(points)
print(f"Area: {region.area}")

region_from_range(x_min, x_max, y_min, y_max)

Create a rectangular region from coordinate bounds.

Parameters:

  • x_min (float): Minimum x-coordinate.
  • x_max (float): Maximum x-coordinate.
  • y_min (float): Minimum y-coordinate.
  • y_max (float): Maximum y-coordinate.

Returns:

  • shapely.geometry.Polygon: Shapely rectangle object.

Example:

1
2
3
4
5
from coords_nsga2.spatial import region_from_range

# Create a rectangular region
region = region_from_range(0, 10, 0, 5)
print(f"Bounds: {region.bounds}")

create_points_in_polygon(polygon, n)

Generate n random points inside a polygon.

Parameters:

  • polygon (shapely.geometry.Polygon): Target polygon.
  • n (int): Number of points to generate.

Returns:

  • numpy.ndarray: Array of coordinates with shape (n, 2).

Example:

1
2
3
4
5
6
7
8
from coords_nsga2.spatial import create_points_in_polygon, region_from_points

# Create a region
region = region_from_points([[0, 0], [1, 0], [1, 1], [0, 1]])

# Generate random points
points = create_points_in_polygon(region, 10)
print(f"Generated points: {points}")

Genetic Operators

coords_crossover(population, prob_crs)

Coordinate-specific crossover operator that exchanges subsets of points between parents.

Parameters:

  • population (numpy.ndarray): Population with shape (pop_size, n_points, 2).
  • prob_crs (float): Crossover probability.

Returns:

  • numpy.ndarray: Population after crossover.

Algorithm:

  • For each parent pair, perform crossover with probability prob_crs.
  • Randomly select between 1 and n_points-1 points to swap.
  • Population size remains unchanged.

Example:

1
2
3
4
from coords_nsga2.operators.crossover import coords_crossover

# Perform crossover
new_population = coords_crossover(population, prob_crs=0.5)

coords_mutation(population, prob_mut, region)

Coordinate-specific mutation operator that relocates points randomly within the region.

Parameters:

  • population (numpy.ndarray): Population with shape (pop_size, n_points, 2).
  • prob_mut (float): Mutation probability.
  • region (shapely.geometry.Polygon): Feasible region.

Returns:

  • numpy.ndarray: Population after mutation.

Algorithm:

  • For each coordinate point, mutate with probability prob_mut.
  • During mutation, generate a new random position within the region.
  • Ensure mutated points remain inside the feasible region.

Example:

1
2
3
4
from coords_nsga2.operators.mutation import coords_mutation

# Perform mutation
new_population = coords_mutation(population, prob_mut=0.1, region=region)

coords_selection(population, values_P, tourn_size=3)

Tournament selection based on non-dominated sorting and crowding distance.

Parameters:

  • population (numpy.ndarray): Population with shape (pop_size, n_points, 2).
  • values_P (numpy.ndarray): Objective values with shape (n_objectives, pop_size).
  • tourn_size (int, optional): Tournament size. Default is 3

Returns:

  • numpy.ndarray: Selected population.

Algorithm:

  • Use fast non-dominated sorting to assign front ranks.
  • Compute crowding distance within each front.
  • Apply tournament selection, preferring individuals in lower fronts.
  • When ranks tie, choose individuals with larger crowding distance.

Example:

1
2
3
4
from coords_nsga2.operators.selection import coords_selection

# Perform selection
selected_population = coords_selection(population, values_P, tourn_size=3)

Utility Functions

fast_non_dominated_sort(objectives)

Fast non-dominated sorting algorithm.

Parameters:

  • objectives (numpy.ndarray): Objective values with shape (n_objectives, pop_size).

Returns:

  • list: List of fronts; each front contains the indices of individuals in that front.

Algorithm:

  • Count how many times each individual is dominated.
  • Record which individuals each one dominates.
  • Return indices grouped by front.
  • Sort individuals by front rank.

Example:

1
2
3
4
5
6
7
from coords_nsga2.utils import fast_non_dominated_sort

# Perform non-dominated sorting
fronts = fast_non_dominated_sort(values)
print(f"Number of fronts: {len(fronts)}")
for i, front in enumerate(fronts):
    print(f"Front {i}: {front}")

crowding_distance(objectives)

Compute crowding distance.

Parameters:

  • objectives (numpy.ndarray): Objective values with shape (n_objectives, pop_size).

Returns:

  • numpy.ndarray: Array of crowding distances.

Algorithm

  • Sort individuals for each objective.
  • Set boundary points’ crowding distance to infinity.
  • For interior points, sum the normalised differences of adjacent objective values.
  • Return distances in the original order.

Example:

1
2
3
4
5
from coords_nsga2.utils import crowding_distance

# Compute crowding distance (pass a single front when needed)
distances = crowding_distance(values)
print(f"Crowding distances: {distances}")

Complete Example

import numpy as np
from scipy.spatial import distance
from coords_nsga2 import CoordsNSGA2, Problem
from coords_nsga2.spatial import region_from_points
from coords_nsga2.utils import fast_non_dominated_sort, crowding_distance

# 1. Define the problem
def objective_1(coords):
    """Maximise the sum of x coordinates"""
    return np.sum(coords[:, 0])

def objective_2(coords):
    """Maximise the sum of y coordinates"""
    return np.sum(coords[:, 1])

def constraint(coords):
    """Minimum spacing constraint"""
    dist_list = distance.pdist(coords)
    penalty = np.sum(0.1 - dist_list[dist_list < 0.1])
    return penalty

# 2. Create region and problem
region = region_from_points([[0, 0], [1, 0], [1, 1], [0, 1]])
problem = Problem(
    objectives=[objective_1, objective_2],
    n_points=5,
    region=region,
    constraints=[constraint]
)

# 3. Create the optimiser
optimizer = CoordsNSGA2(
    problem=problem,
    pop_size=20,
    prob_crs=0.5,
    prob_mut=0.1
)

# 4. Run optimisation
result = optimizer.run(100)

# 5. Analyse results
print(f"Final population shape: {result.shape}")
print(f"Objective 1 values: {optimizer.values_P[0]}")
print(f"Objective 2 values: {optimizer.values_P[1]}")

# 6. Find the Pareto front
fronts = fast_non_dominated_sort(optimizer.values_P)
pareto_front = result[fronts[0]]  # The first front is the Pareto front
print(f"Number of Pareto-optimal solutions: {len(pareto_front)}")